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Abstract

We compared the ability of three different contextual models of lexical semantic memory

(BEAGLE, Latent Semantic Analysis, and the Topic model) and of a simple associative model

(POC) to predict the properties of semantic networks derived from word association norms. None

of the semantic models were able to accurately predict all of the network properties. All three

contextual models over-predicted clustering in the norms, whereas the associative model under-

predicted clustering. Only a hybrid model that assumed that some of the responses were based on

a contextual model and others on an associative network (POC) successfully predicted all of the

network properties and predicted a word’s top five associates as well as or better than the better

of the two constituent models. The results suggest that participants switch between a contextual

representation and an associative network when generating free associations. We discuss the role

that each of these representations may play in lexical semantic memory. Concordant with recent

multicomponent theories of semantic memory, the associative network may encode coordinate

relations between concepts (e.g., the relation between pea and bean, or between sparrow and

robin), and contextual representations may be used to process information about more abstract

concepts.

Keywords: Lexical semantic memory; Word association; Graph theory; Semantic memory;

Semantic networks; Coordinate relations; Concrete concepts; Abstract concepts

1. Introduction

Understanding the meaning of a spoken utterance or written phrase entails knowing

the meanings of the individual words used. Theories of lexical semantic memory are
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concerned with how people represent the meanings of words as well as the processes that

operate on those representations. Investigators have used a number of different laboratory

tasks to discriminate among and refine these theories. A non-exhaustive list includes cate-

gory verification (e.g., Collins & Quillan, 1969), feature or property verification (e.g.,

Conrad, 1972), priming in word recognition (e.g., Meyer & Schvaneveldt, 1971), and per-

formance of theoretical models on synonymy tests (e.g., Landauer & Dumais, 1997). The

present paper focuses on word association data (e.g., Deese, 1965; Nelson, McEvoy, &

Schreiber, 1999) as a means of exploring lexical semantic memory. Word association data

are frequently used to evaluate corpus-based models of lexical semantics (e.g., De Deyne

& Storms, 2008; Griffiths, Steyvers, & Tenenbaum, 2007; Maki & Buchanan, 2008).

In a word association task, the participant is presented a word, referred to as the stimu-
lus or cue word, and asked to respond with the first word that comes to mind. The word

that the participant produces is referred to as the response.1 Building on Griffiths et al.

(2007), the specific approach we take here is to build networks based on word association

data and to then compare the structural properties of those networks with the properties

of networks constructed from different models of lexical semantic memory. If a particular

model accurately characterizes how humans represent lexical semantics in memory, then

a network generated from that model would have properties similar to those seen in word

association norms.

The relatedness between two concepts in memory (which is assumed to drive word

association data, e.g., De Deyne & Storms, 2008; Steyvers & Tenenbaum, 2005) has been

approximated in the literature with at least three statistical measures based on theories of

semantic representation. Perhaps the simplest is the assumption that conceptual related-

ness is strengthened via the principles of associative learning (Deese, 1965). Because

temporal contiguity is considered fundamental to associative learning, various measures

of the frequency with which two words co-occur in the text have been used as proxies of

how related mental concepts are (see, for example, Spence & Owens, 1990; Wettler,

Rapp, & Sedlmeier, 2005), giving them strong connections to compound cuing models of

memory (McKoon & Ratcliff, 1992). We refer to any simple measure of similarity based

on direct co-occurrence as associative similarity.
A competing theoretical construct is that of featural similarity, referring to the extent

to which two concepts share semantic features.2 These features are usually the discrete

properties used in some early models of semantic memory (Gellatly & Gregg, 1975,

1977; McCloskey & Glucksberg, 1979; Rips, Shoben, & Smith, 1973; Smith, Rips, &

Shoben, 1974; Smith, Shoben, & Rips, 1974) as well as in the direct descendants of those

models (Masson, 1995; McRae, Cree, Seidenberg, & McNorgan, 2005; McRae, de Sa, &

Seidenberg, 1997; Moss, Hare, Day, & Tyler, 1994; Rogers & McClelland, 2004). Theo-

retically, two concepts can be high in associative similarity but low in featural similarity,

or vice versa. However, featural and associative similarities are highly correlated and can

be difficult to disentangle operationally (Hutchison, 2003; Lucas, 2000; McNamara,

2005).

A third proxy of conceptual relatedness is contextual similarity, referring to the

similarity between two words in a high-dimensional spatial representation of semantic
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memory, such as Latent Semantic Analysis (LSA; Landauer & Dumais, 1997) or Bound

Encoding of the Aggregate Language Environment (BEAGLE; Jones & Mewhort, 2007).

Similarity in these models reflects the extent to which two concepts appear in similar

linguistic contexts, but it does not require direct co-occurrence. Statistical abstraction

mechanisms allow these models to capitalize on higher-order statistical relationships

above and beyond direct co-occurrence embodied by associative similarity measures. For

example, bee and honey may have a primarily syntagmatic relationship, which would be

reflected in associative similarity. In contrast, bee and wasp have a primarily paradig-

matic/taxonomic relationship, which would be reflected in featural similarity. Contextual
similarity could reflect either or both of these two types of relationships, depending on

the statistical regularity of the words’ linguistic behaviors (Jones, Kintsch, & Mewhort,

2006).

Although it does not rely on a spatial representation of word meaning, the Topic model

(Griffiths et al., 2007) shares LSA and BEAGLE’s emphasis on contextual similarity. In

the Topic model, a word’s meaning is represented by the probability distribution of its

use across a set of topics. Hence, words that are used in conjunction with the same topics

—that is, appear in similar contexts—would be related in meaning. As is the case with

BEAGLE and LSA, two words can be semantically related in the Topic model without

ever co-occurring with one another. Collectively, we refer to these three models as con-

textual models, since they model word similarities based on the similarity of contexts in

which they occur rather than on their direct co-occurrence.

There is a tacit assumption, particularly in the lexical decision priming literature (for

reviews, see Hutchison, 2003; Lucas, 2000; McNamara, 2005), that word association data

reflect associative similarity. However, it is just as likely that performance in a word

association task could be based on featural or contextual similarity as on associative simi-

larity, or on some combination of the three. There has been little research directly testing

the assumption that word associations reflect associative relatedness rather than featural

relatedness or contextual similarity, largely because controlling confounds in stimulus

selection is practically impossible. That research which does exist (Enguix, Rapp, &

Zock, 2014; Spence & Owens, 1990; Wettler et al., 2005) has found that co-occurrence

frequency was correlated with the probability that one word was produced as a response

to the other in a word association task, a finding interpreted as supporting the hypothesis

that word associations reflect associative similarity. None of these studies, however,

attempted to control for the confound between associative similarity and featural or con-

textual similarity, making their results difficult to interpret.

It is well known that simple associative learning is not sufficient to explain linguistic

behavior (e.g., Chomsky, 1959). That is not to say, however, that simple associative

learning has no role at all in language. Recent work with semantic space models has

questioned whether their “deep” learning of latent contextual similarity is necessary to

simulate human data. For example, Louwerse (2011) demonstrated that simple associative

similarity is sufficient to explain a wide range of human semantic data previously used to

argue that models need deep contextual similarity, provided that the corpus on which

the model is trained is sufficiently large. Recchia and Jones (2009) found a very similar
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pattern—LSA was outperformed by a very simple associative metric based on mutual

information on several tasks when the associative model was provided with a sufficiently

large training corpus. These results and others (e.g., Baayen, Hendrix, & Ramscar, 2013;

Ramscar, Dye, & Klein, 2013; Stone, Dennis, & Kwantes, 2011) have renewed interest in

simple models that learn from direct associative similarity. One goal of the current work

is to examine the extent to which such simple associative learning may contribute to the

development of the mental lexicon.

The present work used graph theoretic analyses of networks based on association

norms to evaluate the relative ability of three contextual models (BEAGLE, LSA, and

the Topic model) and an associative model (Proportion of Co-occurrence or POC) to

predict the pattern of human word associations. We first built a set of networks based

on the Nelson et al. (1999) word association norms. We then used Luce’s choice axiom

(R. D. Luce, 1959) along with model-specific measures of similarity to predict the word

association responses that would be made by each of the models. Each set of a model’s

predicted norms was then used to build a set of networks analogous to those constructed

from the Nelson et al. (1999) norms. A model’s ability to capture the network structure

of human semantic memory was evaluated with respect to how closely the properties of

the networks constructed from the model’s predictions matched the properties of the net-

works constructed from the human norms. The specific network properties measured and

the rationale for focusing on them are discussed later. In addition, we evaluated the

models with respect to their ability to directly predict human word-association

responses.

The four models examined were BEAGLE (Jones & Mewhort, 2007), LSA (Lan-

dauer & Dumais, 1997), the Topic model (Griffiths et al., 2007), and proportion of
co-occurrence (POC), a member of the family of mutual information metrics. BEAGLE

was selected because in an earlier, much less extensive study, it performed fairly well

in predicting the graph theoretic properties of association norms (Jones, Gruenenfelder,

& Recchia, 2011). LSA was chosen because it is perhaps the most widely used and

influential model of lexical semantic memory based on contextual similarity (see Lan-

dauer, McNamara, Dennis, & Kintsch, 2007 for a review.). The Topic model has also

been extensively used in the literature on semantic memory, and it has had success in

predicting characteristics of a network based on word associations, particularly the

degree distribution (Griffiths et al., 2007). For the psychological assumptions underlying

these models, the reader is referred to the original sources or to the recent review by

Jones, Willits, and Dennis (2014). POC was intended to reflect the ability of a simple

associative network, such as those proposed by Collins and Quillan (1969) or Glass and

Holyoak (1975), to predict the pattern of word associations without hand-coding. BEA-

GLE, LSA, and the Topic model all reflect contextual similarity; POC reflects associa-

tive similarity. Ideally, we would also have included a model based on featural

similarity. Unfortunately, despite the concerted efforts of various investigators (McRae

et al., 2005; Vinson & Vigliocco, 2008), we did not feel that feature norms existed for

a large enough set of words to adequately evaluate the role of feature overlap in pro-

ducing word associations.
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2. Generating the semantic networks

Following earlier investigators (De Deyne & Storms, 2008; Griffiths et al., 2007; Stey-

vers & Tenenbaum, 2005; Utsumi, 2014), each node in the norm-based networks or

graphs (i.e., the graphs based on word association norms) represented a word. All graphs

were undirected. A link or edge was placed between the nodes representing two words if

the proportion of participants who produced one of those words as an associate of the

other exceeded a particular threshold. No weights were placed on the edges.

Non-weighted graphs were used because we wished to follow as closely as possible the

procedures of earlier investigators studying the ability of contextual models to predict the

network structure of word associations, particularly those of Griffiths et al. (2007), in

order to make our results as comparable to theirs as possible. We were also concerned

about the commensurability of similarity measures across different models. For the most

part, though not exclusively, those investigators also used non-directed graphs (cf. Borge-

Holthoefer & Arenas, 2010). Without the use of Luce’s Choice Axiom or some similar

tool, BEAGLE, LSA, and POC all produce symmetric, non-directional similarity mea-

sures, forcing the use of undirected graphs. Unlike those earlier studies, we did use

Luce’s Choice Axiom and hence could have produced directed graphs. We chose to use

undirected graphs in order to keep our methods as comparable as possible to those earlier

studies.

Our method of constructing the norm-based graphs did differ from earlier studies in

one important respect. All earlier studies used just a single threshold for determining

whether to place an edge between the nodes representing two words. In particular, they

placed an edge between two words if one word was produced as the first associate by at

least two participants in the Nelson et al. (1999) studies. Thresholds, of course, are arbi-

trary, and there is no guarantee that the qualitative characteristics of a graph will match

the characteristics of another graph defined using the same nodes but with a different

threshold for creating edges between the nodes (Butts, 2009). To help mitigate this prob-

lem, we used the norms to build multiple graphs, each with a different threshold. Thresh-

olds were increased monotonically, producing a function relating the change in graph

properties to the change in threshold for placing edges between nodes (i.e., the proportion

of participants who produced the response word as an associate of the stimulus word [cf.

Hills, Maouene, Maouene, Sheya, & Smith, 2009a]).

Griffiths et al. (2007) used an approach similar to ours to compare the relative abilities

of LSA and the Topic model to predict the graph-theoretic properties of association

norms. Our approach differed from theirs in two important ways. First, as we did with

the norms themselves, we used multiple thresholds to build multiple networks for each

model. Second, when creating the graphs based on LSA, Griffiths et al. (2007) used an

absolute measure of similarity. In particular, they chose a value of cosine similarity such

that the mean degree3 of the graph would be approximately equal to the mean degree of

the graph based on the Nelson et al. (1999) association norms. All pairs of words with a

cosine similarity above that threshold were connected by an edge in the LSA-based
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graph; all pairs of words with a cosine similarity less than that value were left uncon-

nected. Such an approach asks the question, “According to the model, what pairs of

words are most strongly related?” The question asked in a word association task, how-

ever, is “What words are most strongly related to a given stimulus word?” (Jones et al.,

2011). The semantic models are theories of how concepts are related to each other in

memory, but they require a process mechanism to produce a response to a cue from this

memory structure. Accordingly, we used Luce’s choice axiom as a simple process

account to construct the graphs based on theoretical measures of similarity. (Use of the

Luce Choice Axiom is implicit in the computation of word similarities used by the Topic

model; see, for example, Eq. 7 of Griffiths et al.) Luce’s (1959) rule was selected due to

its ubiquity in models of cognitive phenomena: it has been successfully applied to phe-

nomena ranging from low-level neural networks to high-level economic models of group

choice behavior. In particular, we assumed that the probability that word Rj is produced

as the first associate to word Si is the ratio of the relatedness of Si and Rj relative to the

sum of the relatedness of Si to every other word in the set of possibilities:

pðRjjSiÞ ¼
bjgi;jP

k

bkgi;k

ð1Þ

In Eq. 1, gi,j is the (model-specific) relatedness of stimulus i and response j. ßj corre-
sponds to the bias for producing response j, independent of the presented stimulus.

In order to avoid an unmanageable number of free parameters, the bias parameter was

a function of the word’s log-frequency of occurrence in the language (cf Nelson et al.,

1999). In particular, we assumed that

bj ¼ ðlogðfreqjÞÞW ð2Þ

where freqj is the word’s frequency in the corpus being used. The parameter w indicates

the strength of the response bias parameter relative to the strength of relatedness parame-

ter gi,j. For a given model, w is fixed; it does not vary from one response word to

another. When w = 0, there is no response bias.

3. Study 1: Graphs generated by simple models

In our first study, we evaluated the ability of four simple models to predict the struc-

ture of graphs built from the Nelson et al. (1999) word association norms. Those models

were versions of BEAGLE, LSA, the Topic model, and POC. We began by building sev-

eral different graphs based on the Nelson et al. (1999) norms by varying the threshold (in

terms of the proportion of participants who produced word j in response to cue i) required
for placing an edge between words i and j. As the threshold is increased, the number of

edges and possibly the number of nodes in the graph decreases. We then generated
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predictions from each model, using Eqs. (1) and (2), as the threshold was increased for

each model.4 As the threshold is raised, the mean number of edges per node (the mean

degree or kmean) tends to decrease. The thresholds used to generate model predictions

were chosen such that the mean degree of the graphs based on any particular model

spanned approximately the same range as the mean degree of the graphs based on Nelson

et al. (1999)’s norms.

Details of the semantic representations used in LSA, BEAGLE, and the Topic model

can be found in Landauer and Dumais (1997), Jones and Mewhort (2007), and Griffiths

et al. (2007), respectively. The POC measure was intended to be a measure of simple

associative strength as determined by the classical laws of associative learning. As such,

it is a measure of how frequently two words co-occur in text relative to their total num-

ber of occurrences. Specifically, POC was computed as follows:

POCi;j ¼ fi;j=ðfi þ fi � fi;jÞ ð3Þ

where fi is the frequency with which word i occurs in the corpus and fi,j is the frequency

with which words i and j co-occur in the corpus (i.e., occur in the same document). When

building graphs based on the POC measure, that value was then substituted into Eq. 1 for

gi,j.
Many different measures of co-occurrence frequency exist (see Jones et al., 2014, for a

list). Our intent with POC was not to create yet another such measure to compete

with existing measures. Rather, the intent was to use a simple measure that we felt was

consistent with the principles that have grown out of an extensive literature on associative

learning (e.g., Rescorla, 1988). That literature indicates that the important factor in deter-

mining whether an association develops between the stimulus and response is how well

the stimulus predicts the response and how well the response is predicted by the stimulus,

not the absolute number of times that a stimulus and response co-occur. Two events

can frequently co-occur but no association between the two forms if they each also

frequently occur in the absence of the other. POC is an easily calculated statistic that

increases as two words co-occur and decreases as the two words occur separately from

one another.

3.1. Dependent measures

In comparing the graphs based on model predictions to those based on the actual

norms, we examined three dependent variables: (a) the shape and slope of the degree dis-

tribution; (b) the mean shortest path length; and (c) the clustering coefficient. These

dependent variables, particularly those involving the degree distribution, are those most

frequently examined by earlier investigators (e.g., Griffiths et al., 2007; Gruenenfelder &

Pisoni, 2009; Hills et al., 2009a; Morais, Olsson, & Schooler, 2013; Steyvers & Tenen-

baum, 2005). In addition, each has both psychological and theoretical significance, espe-

cially the clustering coefficient. We first describe each of the variables and then elaborate

on their significance.
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3.1.1. Shape and slope of the degree distribution
A node’s degree is the number of connections it has to other nodes. A graph’s

degree distribution is the frequency distribution of degrees across all nodes in that

graph. The degree distribution can be of interest because it provides hints concerning

how the graph evolved over time, for example, in our case, how new words were

added to the lexicon as a child learned its native language (Hills, Maouene, Maouene,

Sheya, & Smith, 2009b; Steyvers & Tenenbaum, 2005). We asked if each degree distri-

bution had a heavy right-hand tail, in which most nodes have a relatively small number

of edges but a few have a great deal of edges. Such a degree distribution would result

if new nodes (newly learned words) connect to existing nodes with a probability depen-

dent upon the existing node’s degree. The tails of such degree distributions are well fit

by power law functions, N(k) ~ k�c, where N(k) is the degree distribution, k the

degree, and the exponent, c, is usually between 2 and 4 (Albert & Barab�asi, 2002; Bar-
ab�asi & Albert, 1999). In contrast, if a new node forms an edge with an existing node

with some fixed probability independent of the existing node’s degree, then the tail of

the degree distribution is steeper and well fit by an exponential distribution (Barab�asi
& Albert, 1999). Therefore, we compared the relative ability of power functions and

exponential functions to fit the right-hand tail of the degree distribution of each of the

graphs that we examined. We defined the right-hand tail as all degrees greater than or

equal to the median degree. For the sake of conciseness, when we refer to the function

best fitting a degree distribution, we are referring to the function that best fits its right

hand tail.

In addition to the shape of the degree distribution, we also examined the parameter c
of the best fitting power law for each degree distribution. We refer to this parameter as

the slope of the degree distribution since, when plotted on log-log coordinates, a power

function is linear with a slope of –c. The word association norms themselves were consis-

tently better fit by power functions than by exponentials. Consequently, when examining

the model fits, we always looked at the slope of the model’s best fitting power function,

even in those cases where the degree distribution based on model predictions was better

fit by an exponential than by a power law.

3.1.2. Mean shortest path length
A path is a sequence of edges that can be traversed to move from one node to another.

The path length is the number of edges in that path. The shortest path length is the path

with the shortest length connecting two given nodes, out of all the possible paths connect-

ing those two nodes. The mean shortest path length (MSPL) is the mean length of that

shortest path across all possible pairs of nodes in the graph.

The actual measure that we used was the ratio of MSPL to MSPLer, where MSPLer is

the mean shortest path length in an Erdos-R�enyi random graph (Erdos & R�enyi, 1960).
An Erdos-R�enyi graph begins with a fixed number of nodes; links are then placed

between nodes with some fixed probability. MSPLer is approximately equal to

MSPLer � lnðnÞ=lnðkmeanÞ ð4Þ

8 T. M. Gruenenfelder et al. / Cognitive Science (2015)



where kmean is the mean degree across all nodes in the graph and n is the number of

nodes (Albert & Barab�asi, 2002).

3.1.3. Clustering coefficient
Nodes that have an edge between them are frequently referred to as neighbors. A

node’s clustering coefficient (CC) measures the tendency of a node’s neighbors to them-

selves be neighbors of one another. In particular, a node’s CC is the number of its neigh-

bors that themselves are neighbors divided by the total possible number of such neighbor

pairs. For example, if a node has three neighbors, two of which themselves are neighbors,

then there is one neighbor pair out of a possible three, yielding a CC of 1/3.

Similar to the case for MSPL, the actual measure that we used was the ratio of the CC

to the CC expected in an Erdos-R�enyi graph (Erdos & R�enyi, 1960), CCer. CCer is

approximately equal to

CCer � kmean=n ð5Þ

where kmean and n are defined as above for MSPLer (Albert & Barab�asi, 2002; Watts &

Strogatz, 1998).

3.2. Psychological relevance of the network measures

Our dependent measures may be considered somewhat crude, operating at what Borge-

Holthoefer and Arenas (2010) have termed the macro-level of network analysis. There

are numerous other summary statistics that could be derived from association norms. The

measures we examined, however, do have both theoretical and psychological significance.

Fundamental characteristics of the models under consideration here lead to different

expectations concerning the amount of clustering in semantic graphs. In contextual mod-

els, such as BEAGLE, LSA, and the Topic model, two words can become related even

when they do not co-occur with one another. For example, if the words “wine” and “ap-

ple” rarely co-occur with one another but each does co-occur with “red,” “taste,” and

“healthy,” then, within a contextual model, “wine” and “apple” become neighbors of one

another, increasing the clustering coefficient for “red,” “taste,” and “healthy.” In a simple

associative model like POC, in contrast, two words that do not directly co-occur would

not become neighbors on one another. Hence, the clustering coefficients for “red,”

“taste,” and “healthy” would all be depressed. In general, contextual models should lead

to more clustering than do simple associative models. The question then becomes which

class more closely corresponds to the amount of clustering actually observed in lexical

semantic memory.

Clustering also affects the dynamics of how activation could spread through a network;

those dynamics in turn have empirical consequences (Borge-Holthoefer & Arenas, 2010;

Nematzadeh, Ferrara, Flammini, & Ahn, 2014; Vitevitch, Ercal, & Adagarla, 2011). Vite-

vitch, Ercal, & Adagarla (2011), for example, showed via simulation that activation

spreading from a source node with a high CC tended to stay concentrated in the source
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node’s local neighborhood. Little activation spread back to the source node or presumably

to more distant nodes in the network. For nodes with a lower value of clustering, activa-

tion was able to spread throughout the network, back to the source node as well as to

more distant nodes in the network. A similar pattern of results was reported by Nematza-

deh et al. (2014).5 Too much clustering resulted in activation being confined to a node’s

local neighborhood. Too little clustering resulted in activation diffusing throughout the

network, but at the expense of little activation spreading throughout a node’s local neigh-

borhood—nodes closely related to the node from which the spread of activation started

were themselves not activated. At intermediate levels of clustering, a balance was found

where both a node’s neighbors were highly activated and activation was able to spread to

more distant areas of the network. The extent to which the results of these simulations

generalize beyond the particular networks they studied is at present unknown. These

results do suggest, though, that the amount of clustering observed in a network can signif-

icantly affect both the speed of retrieval from that network as well as what information

can be retrieved, given a particular starting point to the search. These considerations

would seem to apply regardless of whether retrieval involves activation spreading along

links in an associative network or activation diffusing through a high-dimensional space,

such as in BEAGLE, LSA, or the Topic model.

Clustering has also been shown to affect semantic priming (Nelson & Goodmon,

2002)—priming effects are larger for words with higher clustering. Such a result would

be expected if priming is at least in part due to spreading activation and clustering affects

the spread of activation, as argued above. Several studies have also found that both

recognition and recall are higher for words with a larger CC than words with a smaller

CC (e.g., Nelson, Bennett, Gee, Schreiber, & McKinney, 1993; Nelson & Goodmon,

2002; Nelson, McKinney, Gee, & Janczura, 1998; Nelson, Zhang, & McKinley, 2001).

To the extent that determining whether and how two words are related is important to

language comprehension, path length is of obvious relevance to associative network rep-

resentations—shorter paths mean those relations can be more quickly retrieved. Perhaps

just as important, though, is that short paths mean that searches unlikely to be successful

can be quickly terminated. When comprehending a sentence, a listener’s failure to

quickly retrieve a relation between two key words in that sentence may serve as a cue

that a more metaphorical interpretation is necessary (Kintsch, 2000).6

As noted earlier, the degree distribution can provide indications of how a child’s men-

tal lexicon develops over time. A word’s degree has also been shown to affect its recall

and recognition in memory studies (Nelson, Schreiber, & McEvoy, 1992; Nelson et al.,

1993), and other studies have used an analogous construct referred to as “number of

semantic neighbors” to investigate lexical decision, semantic categorization, and other

phenomena (Buchanan, Westbury, & Burgess, 2001; Hargreaves & Pexman, 2014;

Pexman, Hargreaves, Siakaluk, Bodner, & Pope, 2008; Recchia & Jones, 2012; Shaoul &

Westbury, 2010; Yap, Tan, Pexman, & Hargreaves, 2011).

Finally, we note that whereas models like POC have a natural representation as a net-

work, the contextual models lends themselves more to spatial representations, in which a

word is represented as a vector of values that define a point in a very high-dimensional
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space. The concepts of degree and clustering, though, have meaning within that high-

dimensional space as well as within a network. Degree corresponds to the number of

neighbors of a word, that is, the number of other words within some threshold distance

of the target word. Clustering, in turn, is simply the number of those neighbors within the

same threshold distance of each other. Before the incorporation of the graph theory into

psychological theories, these concepts, under different names, have long been important

in psychological studies of both the phonological mental lexicon (P. A. Luce & Pisoni,

1998; Mathey, Robert, & Zagar, 2004; Mathey & Zagar, 2000) and the semantic mental

lexicon (e.g., the studies of Nelson and colleagues, Pexman and colleagues, and Westbury

and colleagues, cited just above). Graph theory simply provides a convenient tool for

measuring and analyzing these concepts.

3.3. Method

3.3.1. Constructing the word association graphs
Multiple graphs were constructed from the Nelson et al. (1999) word association norms

by varying the threshold forward relatedness strength (the proportion of participants who

produced word R as the first response to cue word S) required for placing a link between

two nodes representing words. In constructing the graphs, only response words that also

served as stimulus words were included (cf. De Deyne & Storms, 2008). That is, only

normed words were included in the graph. Any word that was on a standard stop list of

function words was also excluded from the graph. The six threshold values used were

All, .02, .04, .05, .08, and .13, where All corresponds to the case of all responses made

by at least two participants.

3.3.2. Constructing graphs based on models
All four models (BEAGLE, LSA, the Topic model, and POC) were trained using the

Touchstone Applied Science Associates (TASA) corpus (Landauer & Dumais, 1997).

When constructing the graphs, only words that had been normed (i.e., used as cue words)

by Nelson et al. (1999) were considered. Any words on the same stop list used to filter

the association norms were also excluded, as were words that did not occur with at least

a frequency of 10 in the TASA corpus. This procedure closely follows that of Griffiths

et al. (2007).

To construct the graphs, for each normed word, its relatedness strength to every other

normed word was first calculated according to Eq. 1, with Eq. 2 substituted for b and the

appropriate measure of relatedness strength (cosine similarity for BEAGLE and LSA, the

Griffiths et al. (2007) similarity measure—their Eq. 9—for the Topic model, Eq. 3 for

POC) substituted for g. When calculating the denominator of Eq. 1 for a given word X,

only the 200 words most strongly associated to X (according to the relevant measure of

relatedness strength) were used. Limiting the number of terms in the denominator is one

of several appropriate ways of dealing with negative cosines in Eq. 1. Pilot work showed

that varying the number of terms used in the denominator from 100 to 200 to 500 had lit-

tle effect on the resulting graphs. For each model, the parameter w in Eq. 2 was initially
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set to 0 (no response bias) and then gradually increased until fits reached a plateau or

began to consistently decline. Hence, the exact values of w used differed from model to

model. Those values are shown in Table 1.

For each combination of model and value of w, multiple graphs were constructed by

varying the threshold for including an edge between two words. Five or six different

threshold levels were used for each value of w for each of the models.

For BEAGLE, only the context vector, and not the order vector, was used. The param-

eters were the same as those in Jones and Mewhort (2007). For LSA, we used 300

dimensions, a dimensionality which has been shown to optimize performance on various

tasks (Landauer & Dumais, 1997; Landauer, Laham, & Derr, 2004). The parameters used

for the Topic model were the same as the model with 1,700 topics used by Griffiths et al.

(2007), with the exception that we used one additional chain and over six times as many

samples. For POC, co-occurrences were counted across the entire document.

3.3.3. Measuring the dependent variables
For words with only a single neighbor, a value of 0 was used for the CC. The shapes

(i.e., the relative fits of exponential and power functions) of the degree distributions were

fit using linear regression. Slopes of the best fitting power functions were determined

using the algorithm described in Clauset, Shaliza, and Newman (2009), with the

Table 1

Values of w tested for the various models

Values of w Tested

Simple Models

Model Values of w Tested

BEAGLE 0.0, 0.5, 1.0, 2.0

LSA 0.0, 1.0, 1.5, 2.0, 2.5

Topic 0.0, 1.0, 2.0, 3.0, 4.0

POC 0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0

Hybrid Models

Values of w Tested

Model 1 Model 2

BEAGLE/LSA 0.0, 0.5, 1.0, 2.0 1.5, 2.0, 2.5, 3.0

BEAGLE/Topic 0.0, 0.5, 1.0 0.0, 1.0, 2.0

LSA/Topic 1.0, 1.5, 2.0 0.0, 1.0, 2.0

BEAGLE/POC 0.0, 0.5, 1.0 3.0, 3.5, 4.0

LSA/POC 1.0, 1.5, 2.0 3.0, 3.5, 4.0

Topic/POC 0.0, 1.0, 2.0 3.0, 3.5, 4.0

Note. For hybrid models, Model 1 refers to the first mentioned model in the hybrid (e.g., BEAGLE for the

hybrid BEAGLE/LSA) and Model 2 refers to the second mentioned model (e.g., LSA for the hybrid BEA-

GLE/LSA).
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minimum degree included in the fits fixed at the median of the distribution. MSPLer and

CCer were approximated using Eqs. 4 and 5, respectively.

3.4. Results

We present here the results for models using the value of w that provided the best fit

to the CC data for each individual model. The supplementary material contains results for

all values of w for all the simple models (see Figs. S-1 through S-4). We emphasize the

CC data since in our view the CC is the dependent variable with the greatest psychologi-

cal and theoretical significance. In the event that for a given model multiple values of w
produced approximately equally good fits to the CC data, we next examined the fits to

the MSPL data, as that dependent variable is of perhaps the second greatest psychological

and theoretical significance. If multiple model-exemplars were still in contention, we used

the fit to the slope of the degree distribution as the final criterion for determining the

value of w to display for a particular model.

For both the norms and the models, the graphs that were constructed based on the low-

est threshold (i.e., the highest number of edges) consisted of a single large island, where

an island is a set of nodes, each of which can be reached from every other node in the

island by traversing one or more edges. As the threshold was increased, the graphs

became more fragmented, consisting of one large island but also a number of smaller

islands, each with usually fewer than five nodes. Since not all the network statistics in

which we are interested (in particular, the mean shortest path length) can be meaningfully

computed across different islands, the statistics reported here are for the largest island.7

The top panel of Fig. 1 shows the proportion of words that are included in the largest

island as a function of the threshold for the norms and for each of the simple models for

that value of w that provided the best fit to the CC data. This and subsequent figures

share a number of common characteristics. First, each figure shows the observed results

for the Nelson et al. (1999) norms as well as the predicted results. The observed results

are, of course, the same regardless of the model being tested, resulting in some redun-

dancy across the figures. However, repeating the observed results in each figure makes it

simpler to visually evaluate the fit of any given model. The value plotted on the abscissa

is kmean, the mean degree of the corresponding graph. Different values of kmean were gen-

erated by varying the threshold, as previously described. The data are plotted using kmean

rather than the absolute threshold because kmean is simply a more meaningful variable

than the absolute value of the thresholds. In general, as the threshold is increased, kmean

decreases. Hence, as we move from left to right along the abscissa, the threshold

increases but kmean decreases. For expository clarity, we frequently use the term density
in lieu of kmean.

8

As can be seen in Fig. 1, for both the models and the norms, as the threshold

increased, the proportion of nodes included in the largest island decreased. Such a

result is mathematically required—as the threshold is increased, nodes can drop out of

the largest island (or out of the network entirely) but none can be added. The models

and norms, though, did differ in terms of how rapidly that decrease occurred. The
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norms are somewhat remarkable in that the largest island included nearly all words

except at the highest thresholds (lowest values of k-mean). For the models, the rapid

fall off in the proportion of nodes included in the largest island began at higher densi-

ties. BEAGLE and LSA included a reasonably large number of nodes in the largest

islands down to a value of k-mean of approximately 7. The Topic model and POC
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included a large number of nodes in the largest island to somewhat lower values of

k-mean, 5 or below. This pattern was not dependent upon the particular values of w
chosen. In order to avoid issues in comparing a relatively small island produced by a

model to a much larger island produced by the norms, we included only the three low-

est thresholds when evaluating BEAGLE and LSA, and the four lowest when evaluating

the Topic model and POC. Only these values are shown in subsequent figures. The five

lowest thresholds were included for the norms, as the largest island continues to include

a quite large proportion of the words across these five thresholds. The Supplementary

Material does show results across all threshold levels for both the norms and for all

models (Figs. S1–S4).
Fig. 2 compares the best exemplar of each model to the norms on each of the depen-

dent variables. Figs. 2, 3, and 4 all follow a common structure. Panel (a) shows the good-

ness of fit, as measured by R2, of a power function to the degree distribution. Panel (b)

shows the goodness of fit of the power function to the degree distribution minus the

goodness of fit of an exponential function. Values above 0 indicate better relative fits of

the power law, values below 0 indicate better relative fits of an exponential, and values

near 0 indicate that the degree distribution is about equally well fit by power and expo-

nential functions. Panel (c) shows the slope of the best fitting power law to the degree

distribution. Panels (d) and (e) show, respectively, the CC/CCer and MSPL/MSPLer

ratios. The legend for all panels is shown in the upper left of the figure.

3.4.1. Association norms
The results for the association norms are shown as the blue line with diamonds in

Fig. 2 (and subsequent figures). At all thresholds examined, the right-hand tail of the

degree distribution was well fit by a power function (Fig. 2a), and that fit was clearly

superior to the fit of an exponential function (Fig. 2b). The slope of that best fitting

power function was approximately �2.80 (Fig. 2c) decreasing from �2.98 to �2.74 as

the threshold increased. All the graphs showed strong clustering, with the strength of that

clustering generally increasing as the threshold was increased (and the density decreased),

Fig. 1. Proportion of words in the largest island as a function of k-mean. The proportion is relative to the

total number of words in the network generated for the Nelson norms with a threshold of All. The top panel

shows the results for an exemplar of each simple model. The middle panel shows the results for an exemplar

of each possible contextual 9 contextual hybrid model. The bottom panel shows the results for an exemplar

for each possible contextual 9 POC model. See the text for a description of how the exemplars were chosen.

The following notation is used in the legends in this and subsequent figures. A simple model is designated by

XXXn.m, where XXX is a three-character abbreviation of base model and n.m is the value of the parameter

w used in this particular exemplar. For example, BEA0.0 is a BEAGLE model with w = 0. For hybrid mod-

els, XXXn.m_YYYl.k_p_q, where XXX is a three-character abbreviation of Model 1 of the hybrid, YYY is a

three-character abbreviation of Model 2 of the hybrid, n.m is the value of w used in conjunction with Model

1, l.k is the value of w used in conjunction with Model 2, p is the percent of responses generated by Model 1

and q (= 100 – p) is the percent of responses generated by Model 2. For example, BEA0.0_LSA2.5_75_25 is

a hybrid in which the first component model is BEAGLE with w = 0, the second component model is LSA

with w = 2.5, and 75% of the responses come from BEAGLE and 25% come from LSA.
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as indicated by the CC/CCer ratio, shown in Fig. 2d. Finally, the shortest path between

any two nodes tended to be small. As shown in Fig. 2e, the MSPL/MSPLer ratio was

about 1 and remained flat or decreased slightly as the threshold increased.

(a) (b)

(c) (d) (e)

Fig. 2. Fits of simple models to the association norms. Observed values from the norms and model predic-

tions are shown in each panel. Panel (a) shows the R2 of the best-fitting power function to the right-hand tail

of the degree distribution as a function of mean degree (k-mean). Panel (b) shows the difference between the

R20s of the best fitting power and exponential functions to the right-hand tail of the degree distribution as a

function of mean degree. Panel (c) shows the slope of the best fitting power function to the right-hand tail of

the degree distribution as a function of mean degree. Panel (d) shows the ratio of the clustering coefficient to

the clustering coefficient expected in an equivalent Erdos-R�enyi graph (CC/CCer) as a function of mean

degree. Panel (e) shows the ratio of the Mean Shortest Path Length to the Mean Shortest Path Length

expected in an equivalent Erdos-R�enyi graph as a function of mean degree. The notation used in the legend

is described in the caption of Fig. 1.
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Steyvers and Tenenbaum (2005) reported statistics for a graph based on the same set

of association norms used here (see also Griffiths et al., 2007), using a single threshold,

corresponding to the case of All in the present study. Our results for the associations

norms closely parallel theirs as well as those of De Deyne and Storms (2008) for the

Nelson et al. (1999) norms.

3.4.2. Fits of the models to the norms
Fig. 2 shows the fit to the norms of one exemplar of each of the models we tested

(where exemplars differ based on the value of w) for each of the dependent variables.

Fig. 3. Fits of contextual 9 contextual hybrid models to the association norms. Observed values from the

norms and model predictions are shown in each panel. The panels follow those shown in Fig. 2. The notation

used in the legend is described in the caption of Fig. 1.
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Recall that we chose the exemplar for which the value of w best fit the CC/CCer ratio.

The values of w used in the exemplars shown in Fig. 2 were 0, 1, 0, and 3, respectively,

for BEAGLE, LSA, Topic, and POC. As is evident in Fig. 2d, none of the models were

able to accurately predict the amount of clustering in the norms. Their behavior, though,

was quite consistent. The three contextual models consistently over-predicted clustering,

regardless of the value of w. Utsumi (2014) also recently examined the ability of LSA

to predict the network properties of the Nelson norms. That study used only a single

Fig. 4. Fits of contextual 9 POC hybrid models to the association norms. Observed values from the norms

and model predictions are shown in each panel. The panels follow those shown in Fig. 2. The notation used

in the legend is described in the caption of Fig. 1.
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threshold but varied the parameters used to construct the LSA space. The same tendency

for LSA to over-predict clustering that we observed is also evident in Utsumi’s data.

POC, in contrast, consistently under-predicted clustering, again regardless of the value of

w. For both the Topic model and POC, the value of w had little effect on the model’s

ability to predict clustering (with the exception that at w = 0, POC under-predicted clus-

tering more than it did at other values of w). For BEAGLE and LSA, the amount of

over-prediction increased as w increased beyond the value used in Fig. 2.

For reasons discussed earlier, fundamental assumptions of the models lead to predic-

tions of higher clustering in contextual models than in associative models. The results

confirm that reasoning. The fact that clustering is too high in the contextual models and

too low in the associative model suggests that neither class of model alone is able to

accurately predict clustering.

Both the Topic model and POC were able to predict the mean shortest path of the

norms, as shown in Fig. 2e.9 For these two models, those fits remained good across the

values of w tested. BEAGLE and LSA, in contrast, tended to predict path lengths that

were somewhat too long. This tendency is especially noticeable at the higher thresholds

(see the Supplementary Material), where only stronger associations are included and

weaker associations are excluded. Hence, weaker links are necessary for BEAGLE and

LSA to produce short paths, a finding that fits nicely with that of De Deyne, Navarro,

and Storms (2013), who found that including weaker links improved the ability to predict

human relatedness judgments from word association data. The fits of both BEAGLE and

LSA to the path length data did improve at higher values of w, but at the expense of

worse fits to the CC/CCer ratio.

Although all four models produced reasonably good fits to power functions, only the

Topic model and POC consistently produced fits that were superior to fits of exponentials

(see Figs. 2a and b). As the threshold increased, the degree distributions produced by

BEAGLE and LSA were equally well fit by exponentials. That situation can be improved

for both these latter models by choosing different values of w, but only at the expense of

worsening the fits to the clustering data.

Finally, for the model exemplars shown in Fig. 2c, the Topic model and POC were able

to reasonably predict the slopes of the degree distribution. For the Topic model, this fact

was true across values of w, though the predicted slopes were consistently a bit shallower

than the observed slopes. For POC, these fits were not strongly affected by the value of w,
with the exception that at w = 0, the slopes tended to be too steep across thresholds. For

both BEAGLE and LSA, across the values of w tested, the pattern evident in Fig. 2c was

observed—predicted slopes were consistently shallower than the observed slopes.

3.5. Discussion

None of the models examined here was able to adequately predict the observed net-

work properties of the association norms. We did some limited testing (the parameter w
was fixed at 0) of a Pointwise Mutual Information (PMI) metric (Church & Hanks,

1990), an alternative to POC as an associative model. In PMI, the similarity parameter g
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in Eq. 1 is set to the logarithm to the base 2 of the ratio of the frequency with which the

two words co-occur to the product of the frequency of occurrence of each individual

word. The results for the PMI model were similar to those for the POC model with

w = 0. Results were also similar for POC models using window sizes of 5 and 15 instead

of the whole document and with w varying—path lengths and degree distributions were

well predicted, clustering was under-predicted. We also tested four models (BEAGLE,

LSA, PMI, and POC) trained on a Wikipedia corpus (Recchia & Jones, 2009), again with

w fixed at 0. The results were quite similar to those obtained for the analogous models

using the TASA corpus. Finally, we tested those same four models with w = 0 trained on

both the TASA and Wikipedia corpora but using the Edinburgh Word Association norms

(Kiss, Armstrong, Milroy, & Piper, 1973) instead of the Nelson norms. The results were

similar to the analogous models using the Nelson norms. Hence, our results do not seem

to be an artifact of either the corpus or the set of norms we used.

Our overall conclusion from Study 1 is that, on their own, the contextual models BEA-

GLE, LSA, and the Topic model, and the associative model POC are unable to account

for the graph-theoretic properties of association norms. Adjusting parameters to fit one

pattern in the data inevitably puts each model off target for another pattern in the data,

illustrating how difficult it is for these models to simultaneously explain all the network

properties observed in the association norms. In fact, none was able to accurately predict

the amount of clustering observed in the norms at any of the parameter values that we

tested. Clustering, as noted earlier, appears to be of particular theoretical and psychologi-

cal significance.

4. Study 2: Graphs generated by hybrid models

Deese (1965) speculated that the responses participants make in word association tasks

are determined by multiple processes. The response made by one participant to one word

could be determined by one process, whereas the response made by that same participant

to a second word (or by a second participant to the same word) could be determined by a

different process (cf. Morais et al., 2013). If in fact responses made in a word association

task reflect multiple representation/process pairs, then it is not surprising that none of the

models examined above was able to predict the network structure observed in the norms,

since each model reflects a single representation/process pair.

In Study 2, we explored the hypothesis that first responses in word association are gen-

erated by multiple representation/process pairs. Suppose that on some trials, an associa-

tive network determines a participant’s response. Those responses would form a network

like that generated by the POC model. On other trials, the participant generates a

response using a contextual representation, like those used in BEAGLE, LSA, or the

Topic model. Those responses would form a network like that generated by the corre-

sponding model. The observed graph will be a composite of these two graphs.

In the context of our models, such composite graphs are easy to construct, given

one simplifying assumption, described below. Suppose that on a proportion p of trials,
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participants use an associative network, like that which POC is intended to model, to gen-

erate responses, and on a proportion 1-p of trials they use an LSA representation. Then a

proportion p of the word pairs would be those generating the highest values of Eq. 1 as

determined by a POC similarity measure, and a proportion 1-p pairs would be those gen-

erating the highest values of Eq. 1 as determined by an LSA measure. For example, sup-

pose that p = .7 and we set our threshold such that 50,000 word pairs would be used to

build the graph. Then, we use Eq. 1 to generate the relative strengths of word pairs

according to POC and select the 35,000 (.7 9 50,000) most related pairs in the POC

model, and we use Eq. 1 to generate the relative strengths of word pairs according to

LSA and select the 15,000 (.3 9 50,000) most related pairs in the LSA model.10 The

graphs are then constructed using those 50,000 word pairs (which may include some

duplicates, since POC and LSA could both produce the same associate to a word). That

is the strategy that we followed in testing hybrid models; it directly parallels the method

used to construct networks for the simple models.

The necessary simplifying assumption is that the strengths of the associates generated

by Model 1 and the strengths of the associates generated by Model 2 (where Models 1

and 2 are the two simple or base models comprising the hybrid) are evenly distributed

across the overall distribution of strengths. Essentially, the simplifying assumption allows

us to hold p constant as we vary the threshold level.

Study 2 investigated hybrid models involving all six possible combinations of the four

base models. Hence, the hybrid models we tested were BEAGLE/LSA hybrids, BEA-

GLE/Topic hybrids, BEAGLE/POC hybrids, LSA/Topic hybrids, LSA/POC hybrids, and

POC/Topic hybrids. Multiple versions of each hybrid were tested, where the versions dif-

fered in the values of the parameters p (the proportion of responses generated by a given

model) and w (the weight given to the word frequency bias parameter in a model). A

subscript is used to indicate which of the three models the parameter p refers to: pb, pl, pt
and pp refer, respectively, to the values of p for the BEAGLE, LSA, Topic and POC

models. Note that for a given hybrid pair, setting the value of px determines the value of

py: py = 1 – px. In a hybrid pair, w was allowed to take on different values for the two

base models in that pair.11 Subscripts are thus also used when necessary to indicate the

model to which the parameter w refers.

Our decision to test hybrids involving two contextual models (BEAGLE/LSA, BEA-

GLE/Topic, LSA/Topic) may seem somewhat strange. POC measures associative similar-

ity, whereas BEAGLE, LSA, and the Topic model are measures of contextual similarity.

Hence, POC could be considered complementary to the three contextual models, but

BEAGLE, LSA, and the Topic model are more competing models than complementary

models. If BEAGLE and LSA are competing models, why test a hybrid of the two? We

would suggest that the fact that they are competing models is precisely the reason why a

thorough testing of hybrids involving two contextual models is necessary. Contextual

models have been reasonably successful at predicting human performance in a variety of

semantic tasks, suggesting that they are approximating some true aspect of semantic rep-

resentation. If they are competing models, that is, if they are all approximating the same

true aspect of semantic representation, then hybridizing two contextual models should fail
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to produce a model that does a good job of predicting the structure in the norms. If such

a hybrid is found that can predict the structure of the norms, then the success of that

hybrid (and by implication other hybrids) is likely simply due to the fact that they have

one more parameter (p) than the simple models that we tested. In other words, success of

such a hybrid would suggest that the success of hybrids in general might merely reflect

the fact that they include an additional free parameter. Accordingly, we examined hybrids

of two contextual models as a control condition.

4.1. Method

4.1.1. Constructing the word association graphs
The same graphs built from the word association norms that were used in Study 1

were also used in Study 2.

4.1.2. Constructing graphs based on model predictions
Six sets of graphs based on hybrid models were constructed, corresponding to the six

possible combinations of the base models (BEAGLE/LSA, BEAGLE/Topic, BEAGLE/

POC, LSA/Topic, LSA/POC, and Topic/POC). For each base model, the same calcula-

tions of the word-pair similarity parameter, gi,j, were used in Study 2 as in Study 1. Indi-

vidual graphs in the set corresponding to each hybrid differed in terms of the values of p
and w used to create them. For all six hybrid combinations, p was varied from 0.25 to

0.5 to 0.75. We explored values of w around those values that provided the better fits in

the case of simple models. The values of w used for each hybrid are shown in Table 1.

For all hybrid combinations, graphs were constructed for all factorial combinations of the

relevant values of p and w. Similar to the case for Study 1, the graphs for a particular

combination of parameter values differed according to the threshold on the value of

Eq. 1 used to determine whether to place an edge between two words. Several different

threshold values were used for each combination of parameter values tested.

4.2. Results

All hybrids across all values of p and w tested and the results across all thresholds are

shown in the supplementary material, Figs. S-5 through S-61. Here, we show a single

exemplar of each hybrid pair. The criteria used for selecting the shown hybrid were the

same as those used in Study 1—we first found those parameters that resulted in the best

fit to the CC/CCer ratio. In the event of a “tie,” we next examined the MSPL/MSPLer

ratio. If multiple exemplars still fit approximately equally well, we then looked at the

slope of the degree distribution.

4.2.1. Contextual 9 contextual hybrids
The results for hybrids consisting of two contextual base models are shown in Fig. 3.

The middle panel of Fig. 1 shows the proportion of words included in the largest island

of each contextual x contextual hybrid (BEAGLE/LSA, BEAGLE/Topic, and LSA/Topic)

22 T. M. Gruenenfelder et al. / Cognitive Science (2015)



shown in Fig. 3 as a function of k-mean. At higher thresholds (lower densities) that pro-

portion dropped off much more quickly for the hybrids than for the norms themselves.

For that reason, similar to the case for Study 1, the results shown in Fig. 3 are restricted

to the three lowest thresholds.

As can be seen in Fig. 3d, all the contextual x contextual hybrids over-predicted the

clustering coefficient, with the two hybrids involving BEAGLE coming the closest to the

norms. These two hybrids in turn, though, over-predicted path lengths, whereas the LSA/

Topic hybrid accurately predicted path lengths, as seen in Fig. 3e. There are BEAGLE/

LSA and BEAGLE/Topic hybrids that do fit the path length data somewhat better, but at

the expense of worse fits to the clustering data.

All of these hybrid pairs generally produce degree distributions that are better fit by

power functions than by exponentials across all thresholds (see Figs. 3a and 3b). The

slopes for the exemplars shown, however, are all much shallower than the slope of the

degree distribution for the norms (see Fig. 3c). Parameter values can be found where all

these hybrids provide much better fits to the slopes. However, those better fits come at

the expense of worse fits to the clustering data and the path length data.

4.2.2. Contextual 9 POC hybrids
Fig. 4 shows the results for one example of each of those hybrids in which one base

model is POC and the other is one of the three contextual models. The bottom panel of

Fig. 1 shows the proportion of words included in the largest island of each of those

exemplars. At lower densities, the size of the largest island began dropping earlier for

BEAGLE/POC and LSA/POC hybrids than for the norms. This behavior was typical

across all BEAGLE/POC and LSA/POC hybrids. The size of the largest island remained

relatively high to lower densities for the Topic/POC hybrid. Again, this pattern was typi-

cal across all Topic/POC hybrids. Based on those results, the results in Fig. 4 show the

data for the highest three densities for BEAGLE/POC and LSA/POC hybrids and the

highest four for Topic/POC hybrids.

As seen in Fig. 4d, all these hybrids are capable of quite accurately predicting the

amount of clustering in the norms. These hybrids are also quite capable of predicting path

lengths as well, though the BEAGLE/POC hybrid does slightly over-predict them (see

Fig. 4e). These hybrids also generally correctly predict degree distributions better fitted

by power functions than by exponentials, though at the lowest density depicted, the

degree distribution produced by BEAGLE is about equally well fit by an exponential (see

Figs. 4a and 4b). Finally, as seen in Fig. 4c, all three of these hybrids reasonably accu-

rately reproduce the slope of the degree distributions.12

As noted earlier, the hybrid networks may contain duplicate word pairs—word pairs

that are included in the top associates of both component models. Intuitively, more dupli-

cates might be expected in contextual 9 contextual hybrids than in contextual 9 POC

hybrids as the former include only measures of contextual similarity whereas the latter

reflect measures of both contextual similarity and associative similarity. Consequently,

the contextual 9 POC hybrids might do better at predicting the graph-theoretic properties

simply because they are more different from the individual component models than are
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the contextual 9 contextual hybrids. Since the value of the parameter p can also be

expected to affect the number of duplicates, we examined this question separately for the

cases shown in Fig. 3 and Fig. 4 where p = .75 (the three hybrids involving the BEA-

GLE model) for one model and where p = .5 for both models. The proportion of dupli-

cates was approximately the same in the BEAGLE 9 POC hybrids (0.10 for all three

threshold levels shown in Fig. 4) as in the BEAGLE x LSA hybrids (ranging from 0.10

to 0.12 across the three threshold levels shown in Fig. 3) and in the BEAGLE x Topic

hybrids (ranging from 0.11 to 0.12 across the three threshold levels shown in Fig. 3). In

the case of hybrids with p = .5, the LSA 9 POC hybrids did have a smaller proportion

of duplicates (ranging from 0.12 to 0.14 across the three threshold levels shown in Fig. 4)

than did the LSA x Topic hybrids (ranging from 0.15 to 0.17 across the three threshold

levels shown in Fig. 3). However, the proportion of duplicates was about the same in the

Topic 9 POC hybrids (ranging from 0.16 to 0.17 across the three thresholds shown in

Fig. 4) as in the LSA 9 Topic hybrids. Nevertheless, the Topic 9 POC hybrids per-

formed better. Further, they performed as well as the LSA 9 POC hybrids, even though

the latter had a smaller number of duplicates. It is unlikely, then, that the superior perfor-

mance of the POC hybrids is simply the result of them containing a larger number of dif-

ferent word pairs than the other hybrids.

4.3. Discussion

Hybrid models constructed from two base contextual models were unable to predict

the graph theoretic properties of the word association norms. A failure common to all

these hybrids was their consistent over-prediction of clustering, a weakness shared by the

individual base models comprising these hybrids.

In contrast, hybrids consisting of one contextual model and the simple associative

model POC were able to predict the properties of the word association networks, includ-

ing the amount of clustering, but also the shape and slope of the degree distributions and

the mean shortest path lengths. Apparently, at least for the set of models examined here,

to successfully emulate the network structure of human lexical semantic memory, a blend

of a simple associative model with a more sophisticated contextual model is necessary.

5. Study 3: Predicting raw responses in the word association task

We also examined the relative ability of the simple and hybrid models to predict the

associates actually produced in the norms by determining the probability that the top five

associates of each stimulus word in the norms were included in the top t associates pro-

duced by each model to that stimulus word. For simple models, for each stimulus word,

we simply selected the strongest t associates as determined by Eqs. 1 and 2. For hybrid

models, we selected the strongest p1t associates from Model 1 and the strongest (1 – p1)t
associates from Model 2, again as determined by Eqs. 1 and 2. In the event that the same

stimulus—response pair was selected from each component model, only one occurrence
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was kept; the other was replaced with a new pair from Model 1 (with probability p1) or
Model 2 (with probability 1 – p1). We began by examining those hybrids displayed in

Figs. 3 and 4 and the simple models comprising them, that is, the hybrids that provided

the best fit to the network properties for each pair-wise combination of simple models.

5.1. Results

The results are shown in Table 2. The following notation is used in that table:

XXXw.w_YYYw.w_p_q, where XXX is a three-letter abbreviation indicating the first

Table 2

Proportion of the top five associates in the norms included in the top t associates predicted by each model

Model

Number of Model Top Associates Considered

8 16 24 32 40 48 56

Group 1

BEA0.0 0.185 0.246 0.284 0.313 0.337 0.358 0.376

LSA2.5 0.154 0.219 0.263 0.296 0.324 0.347 0.37

BEA0.0_LSA2.5_75_25 0.195 0.261 0.311 0.333 0.357 0.379 0.398

Group 2

BEA0.0 0.185 0.246 0.284 0.313 0.337 0.358 0.376

TOP1.0 0.246 0.321 0.367 0.398 0.423 0.443 0.461

BEA0.0_TOP1.0_75_25 0.223 0.298 0.343 0.376 0.402 0.424 0.443

Group 3

LSA2.0 0.161 0.227 0.271 0.304 0.331 0.357 0.379

TOP1.0 0.246 0.321 0.367 0.398 0.423 0.443 0.461

LSA2.0_TOP1.0_50_50 0.201 0.272 0.315 0.346 0.369 0.389 0.405

Group 4

BEA0.0 0.185 0.246 0.284 0.313 0.337 0.358 0.376

POC3.5 0.162 0.225 0.268 0.3 0.326 0.349 0.367

BEA0.0_POC3.5_75_25 0.193 0.263 0.307 0.34 0.366 0.39 0.412

Group 5

LSA1.5 0.166 0.234 0.279 0.311 0.339 0.363 0.383

POC3.0 0.161 0.226 0.272 0.304 0.332 0.354 0.373

LSA1.5_POC3.0_50_50 0.166 0.234 0.279 0.311 0.34 0.36 0.38

Group 6

TOP0.0 0.253 0.331 0.377 0.409 0.436 0.455 0.472

POC3.5 0.162 0.225 0.268 0.3 0.326 0.349 0.367

TOP0.0_POC3.5_50_50 0.234 0.321 0.372 0.406 0.434 0.459 0.478

Group 7

TOP0.0 0.253 0.331 0.377 0.409 0.436 0.455 0.472

POC3.0 0.161 0.226 0.272 0.304 0.332 0.354 0.373

TOP0.0_POC3.0_50_50 0.24 0.321 0.373 0.409 0.438 0.461 0.483

Group 8

TOP1.0 0.246 0.321 0.367 0.398 0.423 0.443 0.461

POC3.5 0.162 0.225 0.268 0.3 0.326 0.349 0.367

TOP1.0_POC3.5_50_50 0.23 0.312 0.364 0.4 0.429 0.453 0.473
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base model, YYY is a three-letter abbreviation indicating the second base model, w.w is

the value of w used with the immediately preceding base model, p is the percent of

responses generated by the first base model, and q (= 100 – p) is the percent of responses

generated by the second base model. Thus, BEA0.0_LSA2.5_75_25 means that for the

BEAGLE component w was set to 0, for the LSA component w was set to 2.5, and that

75% of the pairs were drawn from BEAGLE and 25% from LSA. The table is divided

into groups of three, where the first two elements of a group are simple models and the

third is the hybrid composed of those two simple models. The first six groups of models

in the table show the results for the six hybrids displayed in Figs. 3 and 4.

Of the simple models, the Topic model clearly does the best job predicting the top five

associates in the Nelson norms. That superiority is evident for the simple models in

Table 2 and also for other values of w that we examined but that are not shown in

Table 2. Griffiths et al. (2007) found a similar superiority of the Topic model over LSA;

we can add that the Topic model is also superior to BEAGLE and POC.

For contextual 9 POC hybrids (groupings 4 through 6 in Table 2), the BEA0.0_

POC3.5 hybrid performed better than both its simple models. For the LSA1.5_

POC3.0_50_50 and TOP0.0_POC3.5_50_50 models, the hybrid and the better performing

simple model (LSA for the LSA/POC hybrid and the Topic model for the Topic/POC

hybrid) performed approximately equivalently in predicting the top 5 observed associa-

tions. We also examined the TOP0.0_POC3.0_50_50 hybrid, as this model’s predictions

of the network properties differed only negligibly from the TOP0.0_POC3.5_50_50

model. Those results are shown in the seventh group in Table 2. This hybrid also per-

formed approximately equivalently to its better component. In order to equate the value

of w used with the Topic model across its hybrids with BEAGLE, LSA, and POC, we

examined the TOP1.0_POC3.5_50_50 model (see the last group in Table 2). This hybrid

model also performed approximately the same as its Topic component.

The better performance with POC hybrids does not simply reflect the fact that the

hybrids are selecting the top associates from each component model and hence will inevi-

tably do better. Although the BEAGLE_LSA hybrid does perform somewhat better than

its better component (BEAGLE, see Group 1 in Table 2), the BEAGLE_Topic and

LSA_Topic hybrids perform worse than their better component (Topic in both cases, see

Groups 2 and 3 in Table 2). Creating a hybrid clearly does not necessarily result in per-

formance as good as or better than the better component.

If attention is restricted to only the hybrid models, as can be seen in Table 2, five of

the six hybrids group fairly closely together with respect to performance, Groups 1

through 5 in Table 2. The one hybrid that stands out as superior is the Topic_POC

hybrid, a result suggesting that of the models we have examined, the Topic_POC hybrid

is the one most capable of explaining the word association data.

5.2. Discussion

The importance of the findings across Studies 2 and 3 is as follows. When the graph-

theoretic properties are included in the analyses, we find that hybrids that include POC as
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one component are able to adequately predict the network properties while doing as well

as or better at predicting the top associates than the better of the two component models.

None of the simple models, however, is able to predict those graph-theoretic properties.

This pattern of findings supports the hypothesis that word associations are the result of a

hybrid model, one component of which is a contextual representation and the other com-

ponent of which is an associative network. Finally, although an analysis of only the

graph-theoretic properties was ambiguous concerning which contextual model was the

best candidate for that hybrid model, the analysis of predicted associates suggests that the

Topic model best fills that role.

6. General discussion

None of the simple BEAGLE, LSA, TOPIC, or POC models that we tested were able

to predict the graph-theoretic properties of the Nelson et al. (1999) word association

norms. The contextual-by-contextual hybrids (BEAGLE/LSA, BEAGLE/Topic, LSA/

Topic) that we examined were also unable to predict these properties. The fact that

hybrids consisting of two contextual models did no better than the simple models indi-

cates that hybrids do not automatically produce better fits simply because they include

an additional parameter (p), or are in some way more robust. BEAGLE/POC hybrids

were perhaps able to predict these properties well enough that such models of how word

associations are produced should not be excluded from future consideration. LSA/POC

hybrids and Topic/POC hybrids, in contrast to the simple models and to the other

hybrids, were able to simultaneously predict all graph-theoretic properties of the word

association norms that we examined. All those hybrids involving a contextual model plus

POC were also able to predict the top five associates of each stimulus in the norms as

well as or better than the better of their two component models, with the Topic/POC

hybrid performing best on this measure. Overall, then, the results suggest that two com-

ponents of lexical semantic memory contribute to first responses in word association,

with one of those components being an associative network and the other a contextual

representation, with the Topic model being the leading contender for the contextual

representation.

There are of course a wide range of models of lexical semantic memory and measures

of relatedness (see Bullinaria & Levy, 2007; Holyoak, 2008; Jones et al., 2014; Riordan

& Jones, 2011 for lists and taxonomies). There are also many possible variants of the

four base models used here. It is not feasible to test all possible variants of all possible

models. Conceivably, some simple, non-hybrid model (including possibly a variant of

one of those studied here) may someday be shown to be able to predict the graph-theo-

retic properties of word association data. All four models examined here learn their

semantic representations based on the co-occurrences of word pairs in text. Potentially, a

model based on sensorimotor features (e.g., McRae et al., 1997, 2005; Vigliocco, Vinson,

Lewis, & Garrett, 2004; Vinson & Vigliocco, 2008) or a model that statistically combines

co-occurrence information with sensorimotor features (Andrews, Vigliocco, & Vinson,
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2005, 2009; Johns & Jones, 2012; Steyvers, 2010) could do as well as or better than the

contextual-by-POC hybrids at predicting the network structure of association norms.

Despite these limitations, our results show that predicting graph-theoretic properties of

association norms, in particular, the amount of clustering in those norms, can be accom-

plished by hybrids of a contextual model and an associative model. To our knowledge,

no simple model or other combination of hybrid models has been shown capable of mak-

ing those same predictions. Our hybrid models assume that first responses in word associ-

ation tasks are sometimes generated by processes operating on an associative network

and are at other times generated by processes operating on a representation of word

meaning reflecting contextual similarity. Recent evidence (Morais et al., 2013) suggests

that the network properties of word association data differ from one individual to another.

Conceivably, such individual differences could arise from the relative reliance that differ-

ent people place on one of those two representations versus the other.

7. Multi-component views of lexical semantic memory

Our results join an increasing number of studies suggesting that there are multiple

components to lexical semantic memory, with the component evident in any given task

dependent upon the demands of that task, the information available in each component,

and the relative speed of access to the information in that component (Barasalou, Santos,

Simmons, & Wilson, 2008; De Deyne & Storms, 2008; Gruenenfelder, 1986; Hampton,

1997; Lorch, 1981; Louwerse, 2011; Maki & Buchanan, 2008; McRae et al., 1997).

For example, McRae et al. (1997) argued that relatively fast access to featural repre-

sentations is important when initially determining a word’s meaning, but that higher level

conceptual representations or theory-based knowledge is required when reasoning with

concepts. Barasalou et al. (2008) argued in their LASS (Language and Situated Simula-

tion) framework for a division of semantic memory into a linguistic level and a level

involving situated simulations. The linguistic level is accessed relatively quickly but is

responsible for only superficial processing. True conceptual processing occurs at the dee-

per level of situated mental simulations, analogous to both the featural representations

and the higher-level conceptual representations of McRae et al.

De Deyne and Storms (2008), using a multi-response word association task, noted a

shift in the type of conceptual relations reflected in the second and third responses as

compared to the first response. Based on these shifts, De Deyne and Storms argued that

initial responses reflected relatively quick access to a linguistic, LSA-like representation,

whereas second and third responses reflected slower access to representations at a more

conceptual level. The present results do not conflict with either the LASS framework or

with De Deyne and Storms’s results. Both representations that we are suggesting play a

role in word association—the associative network and the contextual representation—op-

erate, in terms of LASS, at the linguistic level. As such, our proposal can be considered a

refinement of LASS at the linguistic level more than as an alternative to LASS. Similarly,

De Deyne and Storms and we seem to agree that initial responses in a word association
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task reflect processes operating at the linguistic level. We offer a more detailed view of

how the first response to a cue word is made in a word association task, but we do not

argue with their view that second and third responses reflect a shift to another form of

representation at a more conceptual level.

Why have two components—an associative network and a high-dimensional spatial

representation reflecting contextual similarity—of lexical semantic memory at the linguis-

tic level? Two non-mutually exclusive alternatives suggest themselves. The two different

components could better lend themselves to representing different aspects of a word’s

meaning. In addition, the two components could predominantly be used to represent

information about different types of concepts.

Consider the first possibility, that the different components are used to represent differ-

ent aspects of a word’s meaning. Olson (1970) has argued that knowledge of coordinate

relations (e.g., the relation between “red” and “blue” or between “sparrow” and “robin”)

is critical to resolving reference. There is evidence from the category verification task (in

which participants verify as quickly as possible statements of the form, “An S is a P,”

e.g., “A cucumber is a vegetable”) that coordinate information is represented in an asso-

ciative network, whereas featural information (or perhaps contextual similarity—the data

do not discriminate between these two possibilities) is used to make fine category judg-

ments. Compared to the case where all false sentences pair semantically unrelated con-

cepts (“A cucumber is a car”), the size of the typicality effect13 for true items increases

when false sentences pair concepts with a category coordinate to their appropriate cate-

gory (“A cucumber is a fruit”) (McCloskey & Glucksberg, 1979; Experiment 2; see also

Hampton, 1997, Experiment 2). Such a result follows from models that assume that cate-

gory verification involves a comparison of the semantic features of the two concepts in

the to-be-verified sentence (e.g., Gellatly & Gregg, 1975, 1977; Hampton, 1997; McClos-

key & Glucksberg, 1979). Such a result would also seem to follow from models that use

cosine similarity within a high-dimensional spatial semantic representation to explain per-

formance in category verification (Louwerse, Cai, Hu, Ventura, & Jeuniaux, 2006).

In contrast, the size of the typicality effect for true items is invariant when coordinate

false items (“cucumber—okra”) are used compared to the case where only anomalous

false items are used (Gruenenfelder, 1986). Presumably, retrieving an association between

the two concepts from an associative network is sufficient to determine that an item is

true when all the false items pair unrelated concepts. When false items include coordinate

items, that retrieval must be followed by a process that evaluates the labels on the

retrieved association in order to discriminate category and coordinate statements (cf.

Glass & Holyoak, 1975; Holyoak & Glass, 1975). That evaluation process is presumably

independent of typicality. The overall result is no change in the size of the typicality

effect. In addition, both Gruenenfelder (1986) and Lorch (1981) found that, contrary to

the usual pattern, false items pairing coordinates were rejected more quickly in a category

verification task the more strongly related the two concepts were (but see also Lorch,

1978), consistent with the hypothesis that rejecting these statements as false involves

retrieving an association between the two words (see also Glass & Holyoak, 1975;

Holyoak & Glass, 1975). These results, then, suggest that people rely on an associative
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network to determine coordinate relations, but on featural or contextual information to

make fine-grained category judgments.

The second, non-mutually exclusive reason for both a contextual representation and an

associative network at the lexical level is that the two could be used to represent informa-

tion about different types of concepts, perhaps because the way those concepts are

encountered in the world lends itself to one form of learning over another. Recchia

(2012) has recently produced evidence consistent with the hypothesis that people rely on

information in an associative network-like structure to perform a variety of semantic tasks

with concrete concepts but rely on a contextual representation to perform those same

tasks with abstract concepts. For example, the number of semantic neighbors, a measure

reflecting contextual similarity, predicted performance in lexical decision for words denot-

ing abstract concepts but not for words denoting highly concrete concepts. In contrast,

number of features predicted lexical decision performance for highly concrete but not

abstract words (Recchia & Jones, 2012). Recchia (2012) noted that these features tended

to denote visual properties and physical components of concepts denoted by concrete

words, and these properties in turn had high associative relatedness with concrete words.

Similarly, LSA cosines, a measure of contextual similarity, predicted priming for abstract

words but not for concrete words. Finally, Recchia examined features generated to cue

words in a feature generation task. He found that a hybrid model of PMI (similar to the

POC measure) and LSA better predicted the features generated to a particular cue word

than did either PMI alone or LSA alone. Furthermore, associative strengths between cues

and generated features were higher for concrete cues than for abstract cues, while contex-

tual similarities were higher for abstract cues than for concrete cues. The overall pattern

is consistent with the use of an associative network for tasks involving early processing

of concrete words, but with more reliance on a contextual representation when perform-

ing those same tasks on abstract words.

To summarize, our results indicate that two different forms of representations, each

operating at the linguistic level, are sufficient to explain word association data. These two

different representations could be used to solve different problems faced in language

comprehension and production. An associative network appears well suited for represent-

ing information about coordinate relations, and for encoding information about the physi-

cal properties of concrete words. Contextual similarity may be more appropriate for

making fine-grained semantic decisions and for representing information about abstract

words.
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Notes

1. In Nelson et al.’s (1999) terminology, the response word is referred to as the tar-
get. We follow the clearer terminology of most subsequent articles that refer to this

elicited word as the response.
2. The term semantic relatedness is sometimes used in a similar way in the literature.

However, we do not wish to preclude the possibility that two concepts can be

semantically related while sharing few if any features.

3. In undirected graphs, which are the focus of the present work, a node’s degree is

simply the number of edges connected to that node.

4. Strictly speaking, because the Topic model directly predicts the probability of

response R, given stimulus S, there was no need to apply Eq. 1 to the values gener-

ated by Eq. 9 of Griffiths et al. (2007) to this model. Doing so, and including all

words in the denominator of our Eq. 1, results in the same values as applying only

the Griffiths et al. (2007) Eq. 9. However, for reasons discussed below, we

included only the 200 most strongly related word pairs in the denominator of Eq. 1

for the other three models. Hence, to make the comparisons amongst all four mod-

els as alike as possible, we did the same for the Topic model. Doing so does not

change the relative order of the probabilities of different words being generated as

responses to a particular stimulus word.

5. Their study involved information diffusion within a social network; the situation,

though, is analogous to activation spreading in a memory network.

6. The concept of a path, and hence of path length, is most obviously applicable to

associative network models of semantic memory. One of the most frequently cited

reasons for examining path length is to determine the degree to which an associa-

tive network model has a small-world structure similar to that observed in human

associative networks, as the combination of short path lengths and highly clustered

neighborhoods in a small-world network is presumed to facilitate efficient retrieval

(Morais et al., 2013; Steyvers & Tenenbaum, 2005). For similar reasons, the con-

cept also has relevance to high-dimensional spatial models (Steyvers & Tenen-

baum, 2005). Such models, after all, need a search mechanism. That mechanism

might be a random walk from one point in the space representing a word to

another point in the space representing an adjacent word. Alternatively, it might

involve activation diffusing through space. As words are encountered, they are

evaluated in order to determine if they meet the criteria of the search. In either

case, the concepts of path and of path length would seem to be psychologically

relevant.

7. We did examine the clustering coefficient and the degree distribution for all nodes

in a given network, including those at all thresholds tested. For these measures,

including nodes from all islands had at most a negligible effect on the results.

8. Technically, density and kmean are linear transformations of one another.

9. The line for POC lies so close to that for the norms that it may be hard to discern

in the figure.
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10. This process is directly analogous to the method used for creating simple models,

where we set a threshold on the strength of word pairs used to construct the net-

work such that a particular value of k-mean was approximated.

11. Because different models have different mechanisms for incorporating word fre-

quency into their base representations, we did not expect w to be constant across

all models.

12. For the slope of the degree distribution, the Topic/POC hybrid does appear to pro-

duce better fits than either the BEAGLE/POC hybrid or the LSA/POC hybrid. Par-

ticularly in the case of the LSA/POC hybrid, we caution the reader against

interpreting that observation as favoring Topic/POC hybrids over LSA/POC

hybrids. As mentioned earlier, the Clauset et al. (2009) algorithm allows the user

to fix the value of the lowest degree included in the fit, or allows that variable to

be a free parameter. In the fits reported here and in the supplementary material,

we fixed that parameter to be the median of the degree distribution. We also fit

the degree distributions allowing that parameter to be a free parameter. In that

case, the LSA/POC and Topic/POC hybrids continued to fit the slope reasonably

well across thresholds. (The fit of the BEAGLE/POC hybrid became worse.) How-

ever, in that case, the LSA/POC fit was somewhat better than the Topic/POC fit.

13. The typicality effect refers to the increase in time needed to verify less typical

members of a category (“okra—vegetable”) as compared to more typical members

of the category (“peas—vegetable”).
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